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The research group at the Center for Wave Phenomena has been developing
inversion algorithms for progressively more complex background velocities
and source-receiver configurationms. In each extension, the crucial issae
has been the determination of certain properties of a matrix involving
derivatives of the travel time(s).

This report discusses and extends & recent result along these 1lines
which appeared in a paper by Gregory Beylkin (1985). Beylkin redoces the
problem to consideration of a single canonical determinant, h, (defined
below) and then assumes that this determinant does not vanish. With this
assumption, he establishes a very general inversiorn result,

Obviously, then, fotore theoretical research will focos on the
evaluoation of b and on establishing conditions for the mnon-vanishing of
Beylkin's determinant, h, and on dealing with the phenomena arising when it
does vanish.

The more serious cases of vanishing h are due to phenomena such as
caustics in the incident ray field. However, Beylkin's h will also vanish
in the case of insufficient date. Thus, for example, we rule out suoch
obvious impossibilities as obtaining a 3-D inversion from a single line of
data, etc. In the case of insufficient data, one must make additional
assumptions ebout the subsurface geometry comsistent with the given datas
configuration. In the example just mentioned, one would be forced to assume
that the subsurface was independent of the direction orthogonal to the line
of observations. One could then either use the 2D wave equation (i.e.
sssome line sonrces) as in classical migration, (Schneider, 1978), (Stolt,
1978), or, preferably, continoe to use the 3D wave equation (i.e. use point

sources), (Cohen and Bleistein, 1979). This letter approach is known as the
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2.5D geometry and is expounded in detail in a recent Center for Wave

Phenomena Research Report (Bleistein, 1984a).

Beylkin's paper uses powerful mathematical tools, such as the notions
of pseudo-differential operators, generalized Radon transforms, and
generalized back projections. Moreover, Beylkin frames his work in am N-
dimensional space.

Here, we dispense with this mathematical machinery and for convenience
confine ourselves to the 3D case (and its 2.5D specialization). We are able
to expound Beylkin'’s results by an approsch similar to that presented
earlier in (Cohen and Hagin, 1985). However, we do not attempt to
rigorously prove oor results, bot instead content ourselves with an
intuitive derivation and the citing of Beylkin'’s theorem. We remark in
passing that we are contemplating the possibility of developing a classical
proof of Beylkin's resuolt.

We have established significant simplificetions of Beylkin’'s resualt
for the following cases of propagation governed by the acoustic wave
equation:

(1) The zero-offset case with a general c(x,y,z) reference velocity. This
work is described in the present report. See also (Cohen and Hagin,
1985) for the special case of a c(z) reference velocity. Here, in all
but the case of a constant reference, one has to exclude "turned rays”
in order to guarantee that h (or its equivalent in earlier approaches)
does not vanish. It is easy to build this restriction into the zero-
offset algorithm (Sumner, 1985), buot only at the cost of excluding the
imaging of reflectors "from below”. At the present time, the Center
for Wave Phenomena is investigating the use of turmed rays in the c¢(2z)

case.
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(2) The common source offset gather and the common receiver offset gather
with general c(x,y,z) reference velocity. This work is also described
below.

(3) The case of common offset with a constant reference velocity. Here, an
explicit inversion formula has been obtained (Sullivan and Cohen,
1985). VWe remark that the derivation of this result does not proceed
from the Born approachk described below, but instead starts from the
Kirchhoff (high frequency) representation of the scattered field
(Bleistein, 1984b). Work on coding and testing this slgorithm is now

ander way.

I1. The General Inversion Formuls

We <consider a completely arbitrary source-receiver configuration

parametrized by two surface coordinates, §, and §,. Vectors, x and x'

denote arbitrary sobsurface field points. Vector X denotes a genmeric

source, while x denotes a8 generic receiver. Any relation between the

sources and receivers is defined by the dependencies of 1. and x, on the

parameters &, and §,:

1.}
[}

' = ’ ’ ’
=(x',x',x
(xx.x’,x’) » ! ( 2’ 3’ ')

[ ]
|

= (ﬁl.ﬁz) » !s = !s(i)a !t = !r(i)' (1)
For example, if
2 (8 =10 . (2)

then we have the case of zero offset. 1f

5’(;) = constant, (3)

then we have the common source configuration. If
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x (%) = x (¥) + 24, d = constant, (4)

then we have the common offset case, etc.

We note that the above formulation of the source-receiver configuration
is somewhat more general and jinclusive than the formulation in Beylkin's
paper. Our formulation admits the possibility of a corved observation
surface, while he makes the usual assumption of observations on the flat
observation plane z = x, = 0. We have included this mild generalization
becavse it may asid in the development of pre-statics inversion algorithms
(May and Covey, 1980). Also, Beylkin splits off his derivation of the
common source result into a separate case from the case when the receiver
locations depend on the source locations.

As expounded in several previoos papers and reports, we make the
following assumptions:

(1) the velocity, v(x,y,z), is well approximated by a knmown reference

velocity, c(x,y,z), so that

1 1

3 = - (1+a(x)), (s)

v (z) ¢ (x)

where a(x,y,2z) is a perturbation correction,
(2) the seismic fields are governed with sufficient accoracy by the 3-D
acoustic wave equation, and

(3) the seismic source can be reduced to an ideal 3-D point source, so

that:
2 18
V ou(t, x)~ —5 ol(t,x) = -8(t)6(x-x ) . (6)
c (x) a8t s
_‘_

TN
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These assumptions snd the application of Green'’s theorem lead to the linear

integral equation,

G(w, x',x )G(v, x',x )
s i 1

D(w,x_,x. ) = w’III a’x’ alx') - (7) f}]l

r' s 2

c (x') T

R

Here, by the assumption that a in (5) is small, we have been sble to Tl

e

approximate the field emanating from the sources by one governed by a wave .}

equation with a velocity function equal to the referemce velocity, ¢,

instead the full velocity, v. Since our sources are point sources, the
functions depoted by G in equation (7) are the impulse response or Green's
fenctions for the wave equation with velocity c(x,y,z). Equation (7) is an
integral equation for the unknown velocity perturbation, a(x,y,z), with data

being the observations, D, at the receivers, x , duoe to the sources, x_.

r’ s

We now exploit the fact that geophysical data resides in the high

frequency regime (Bleistein, 1984b), so that we may replace the Green's

fonctions in (7), by their WKB) approximations,

jut(x, x )
=" >0

, (8)

G(w,_x_.;o) ~ A(;.;o) e

where x, is either x, or x, and the travel-time phase satisfies the eikonal
equation,
1
V-V = , (9)
¢ (x)

while the amplitude satisfies the transport equation,

Vr VA + AV'T =0 . (10)

\ B ;““"“‘"“*"*-I
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Thus, we may rewrite (7) as

. i

- « " . CIC
. . S RS AL S R S W S
- = WP LR e . WP I . WP, W RPNV PP T TP PR WY R




A et AR A i Rl Al < Pt At A A dht S i A i LA Al Sl Ak it g St et _Ha RN AL A s St U~ o A okl gl gl aull aa i it i Rl - Rl A A Radi el el o)
o B - T v iy

Do, 5z ~ o fff o'xr AR RO oy (11)
c (x')

where $(x,f) and a(zx,&) are given by

¥z, E)

t(;.;s) + v(x,x) .,

(12)
a(x, )

Mz x )Mz x)

From the basic migration principle of "backward propagation®, it is not
hard to guness that the inversion operator for (11) will have the negative of
the phase in (11). The correct amplitode is not as easy to guess and inm our

inversion equation,

-iol(x, &)
D(w.gr,xs) » (13)

alz) ~ ” a‘e [0 vz 0 I do F(w) e
ve merely denote it by b(x,f), and deduce it below. In equation (13), Jg
denotes the differential area element on the observation surface (uonity
for a plane) and F(w) denotes & known high band pass filter which is
included to honor the fact that the data is confined to the high frequency
regime. Note that while 8 priori the unknown amplitude could depend on w,
we suppress this potential dependence because our prior inversion results
suggest that b(x,¥) is independent of w to first order. The results to
follow also confirms this assumption.

Inserting (11) into (13) gives an equation which maps a(x’) to a(x).
Thus, since we have an integral over all x' space, the kermel must dbe the

three-dimensional Dirac delta function. A slight rewriting of this fact

gives
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Our task is to solve (14) for the unknown amplitude, b. Then equation (13) ~ -

oA

e

will give the inversion algorithm for a. j?¥
Since we have used high frequency approximations, we ceannot recover low ;‘1
frequency phenomena such as trend information. We can expect to recover o
S

information about the discontinuities (i.e. rapid <changes) in the

sabstructure,

The essence of Beylkin's result is that if we confinme attention to the
discontinuity structure of a, then in (14), we need keep only two terms of
the Taylor series of ¥(x’,f) about x’' = x7 and similarly we need keep only
one term of the expansion of a(x’,g). In order to establish these facts
rigorously Beylkin oses powerful results in the theory of generalized Radon
transforms. However, noting that the result on the left must involve a
Dirac delta fanction acting at x’' = x, these approximations are intaoitively

ressonable. Thus in (14), we use the approximetions

$(x',8) = ¥(x,8) + V¥(x,E)(x'-x) ,
a(x’',E) = a(x, %) (15)

to obtain

II 't ]E’.(;.;)b(;,;) .

ioV¥(x,E) - (x-x')

j'dm 0 Flw)e £ ¢ (2)b(zx-x') . (16)

Following Beylkin, we make the change of variebles,
k = oV¥(x,t) (17)

from w, &y, &, to k,, k,, k, (while viewing x 85 @ “parameter”). Since the 5':

bt bt e e b B 4 b i,
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w dependence on the Jacobian of this transformatiorn is jost a power, Beylkin

defines the scaled Jacobian, h, by

] ] ] ) ]

ax ox ox
1 3 3

3’8 a’ *

blx.8) = 33.9T., on3L.  Snat ) (18)

1 1 3 1 3 1

3% 3’8 '8

dx 8%, Ix, 9%, Ix, 8%,

We now rewrite (16) as

» g ik (x-x') _ 3
f{f ax TET;TETT a(nB)blx e EE) 2 Piysiz-x) - (19)

From (19) end the classical Fourier transform completeness relatiom, it

is clear how to choose the inversion amplitude b:

2 b(z, ¢ |
b(rg) = — & (x| : (20)

8n {E’.(;.:)

Inserting this resolt into (13) gives the inversion result:

3 s
a(x) ~ E_lél II d’g 1312;&%1[ de e-lw!(z'i)D(w.; »X.) (21)
8n a(x, § r s
where § and a2 are defined above in (12).
It is intriguing to note that if we define the kernel,
3
w G(w.g.;‘)c(w.g.gr)
x(w,!,x ,X ) = (22)

cz(g)

then we may state oor integral equation and its inversion as

-t LT - P ~ - " . - - R - % e . . ST e T e et . Y ~ .t - ..
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Doz = fff 65 Ko zx .z ap (23) 7]

and

et & = [[[ o' 1 Dlw x ,x.) (24) =94

= ’ K(o,x ,x_,x) "Zr s Y

8n it S 4

In the last equoation, we muost regard o as a function of x and k as defined fj.'
- —

by the change of variables (17). -"_Lﬂ.si
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ITI. The Zero-Offset Confignration

In the case of zero-offset, we can find & representation of the
Jacobian h in terms of the rays used to construct the Green's function.

Using the notation x,, 8s in (2), for the zero-offset source-receiver point

we have
2Vt(§,;o) p(;.;o)
Bing) = [ 25— vetnz) | =8 |53 ptzx) (25)
€, o g, o
0 d
2 ¢, Vr(g.go) T 9(5.50)

where in the second equality, we have introduced

2(5.50) = Vt(g,go) , (26)

and where the § dependence in p comes from x, = x ().

From the eikonal equation (9), we have

E'P=-—2——. (27)

Since the speed, c, is independent of &, we also derive from (27)

3 .
E mp—o; 1—1:2- (28)

We now moltiply the third column of h by p, and compensaste with the
reciprocal of p, ootside the determinants then on muoltiplying the first two

columns by respectively p, and p,, and adding these to the third column, we

obtain

- 10 -

-

'.. A'-'.'-.'. - - ) - -- ° \.- N - . . B B .
S - PR PP S AP LA PO - S - AT T
1 u V.Y . Y . e S S %2




-

i
s . L

R It = A T
A
v .'\.x'.l'..'.. \_:.; Lot

e TN

oo T !
." y‘ l._a '/&

which can be written as

8 2’ Fal
¢ (x)p,(z.x,) 1’ s

Here we have introduced the Jacobian notation

a(pl; pz)
T(T;'—E:T = . (31)

The evaluation of this determinant is a key, and often difficult, step. In
appendix A, we show that

L 'y 38 (32)
a—(—c—l'—g—’)— = '16’! A (!;!o)p’(!l!o) lg Bo

where p, is the initial direction of the ray from x, to x and 8 is the

downward normal to the data surface at X, Thos the absolute value of h is
given by
8A°(x,x )

b(x )| = —— - 16n’F £ -p, (33)

c (x)

and the zero-offset inversion for gemeral reference velocity can be

expressed as
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- B o T TN e LI T L
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~2iuwt(x, x )

a(x) ~ — II d ¢ {g o op I do e - e D(m.go) . (34)
This is a substantial simplification of the general resuolt (21), since it
obviates the necessity for compuoting the amplitude when tracing the rays
between surface and field points. Note from appendix A that computation of
the amplitude would, in torn, require computation of the ray Jacobian. The
net result is that we save six equations along rays and have omly to solve
the remaining seven equations for x, p. and T.

The special case of this result in which the reference speed is a
function of depth only was derived in (Cohen and Hagin 1985). That result
agrees with the present one aside from a slight chamge in notation. Of
course the present result also agrees with the constant reference speed
result (Bleistein, 1985).

There are two further issues to be addressed concerning the
implementation of (34). These are the specislization to the case of a
lipear array (the 2.5 dimensional case mentioned in the introduction) and
the fact that discerpning discontinnities is made easier if one replaces a by
the reflectivity fuanction, f$, (related to the normal derivative of a)
(Bleistein, 1984b).

In the usual case of a data set collected on a limear array instead of
a full 2D array, we cannot obtain a full 3D subsurface inversion. A model

consistent with this restricted set of observations is one in which both the

L observation surface and the subsurface are assomed to be "cylindricel” with .
S :
s =
- - respect to x,: =
.'_'.'. c = c(x » X ) » a = a(x » X ’ (35) -"
r . 1 3 1 ] -
= ~
R Ey
ob o
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and that the observation surface had the special parametrization:

toy e T e r &

LS PR
' o ‘ PR
T T A

x.=x(§), x,= &, x'=x’(§1) . (36)

1

In the 2.5 case, it is possible to eliminate the integral over §{; by the
method of stationary phase. Carrying out this step and for simplicity

further specializing to the case of linear observationms,

x ==L, =0 , (37)

we obtain the 2.5D resnlt,

16 do -2iut(xl, x'.E‘.O)
alx ,x ) ~— [ dga“"f' q, ‘n F(u) e D(m.gl) + (38)
n

Here o denotes the final valoe of the ray parameter ¢ for the ray from x,
to x (or equivalently from x to _x_o) and q, is the value of p, on the
observation array (see (40) below). In the reference just cited, it is

shown that we may uose 2D calculations to compote the rays:

dx1
dJo " Py x’(O) = 51
dx.
P =p , x’(O) =0
dp
3?1‘ = -;-5—2- 1 , p’(O) =q, (39)
t S (xl.x,)
3
_ p, = \c*- o}
t d 1
) =5 » o =0

R SR G 4

*

To apply (38), we fix the desired field point, (x,,x,) and a suitable

7

Bt s
PR . B

(] ¥ . . -
P N LT e e o

» L . PRI
_"J-,'.,"’ L

-

sperture of observation points (&,,0) on the observation array. Then we

trace the ray from (&,,0) to (x,,x,) and <ompute v, og and the ray parameter

.

{ - 13 -

et e T et el e et Tt Telmc L T TRt
. .t N PR W e e AN

o st - .
W L, . . e, oS- . . . . - . RS
P T P e R NP . PRI AR TN T e e e e . e et e e e e e e T e S
I AP TP I PP P DI SUP I S E PIIE D PY Y LA U YA I TaAr SIS T T Wl A0S S D | PRI SH PSS S5 USRIV P RS SRS RS




B T e e Sl R i LA Sous Ona oats St Ste St SEAE End stel JSRuE I At ot IO oA ek RS i s - it

4,. Then we can explicitly evaluate

q, = ] — -aq, (40)
¢ (§,,0)

To obtain the reflectivity function, B, we introduce into (38) the
factor (Bleistein, 1984b),

i sgn(w) k/4 ,

and thereby obtsin, by (17),

e e [

c(xx.x’){i

—21..0’1(!:0 x’, EI' 0)
[ do [T Flw) o Dlug) - (41)
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IV. The Common Source Configurationm

In this section, we show that the compuotations of the previous section
sllow as to obtain inversion formulae for the common source configorationm
and (by reciprocity) for the common receiver configuration. For a common

source gather, we have

!8 = constant , (42)

so that t(x,x,) and

g, = Vel(x.x) (43)

are independent of the surface parameters, {. Denoting the ray direction to
the receiver array by simply p, (to facilitate comparison with the previous

section), we have

p=Velxx) , (44)

and Beylkin's determinant becomes

(45)

ot "
n:lm »

+

o

h(x, &) =

“’1@

e
»

Since determinants are linear functions of their rows, h can be written

as h = h, + h, where
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|
h 3F P (46)

Ili and

P
- d
vl R = =P (47)

2
:Jf. Since the last two rows of each of these determinants is the same as in the ftf:
t,; zero-offset case (with X, taking the place of ;o). we can proceed as at the *;!1
3
F{ beginning of the last section to obtsin .
e 3p .p.) L]
: 1 3 1" s —
b, = ————lp_ptp *+p |37~ (48) 9
F 1 p,(g.xr) [ s,°% s s | 0(%.,E) S
>_. “..*
":'_':‘ and

L 4

.
Arg L 2

1 a(px.pz)
a(:l.cz)

e
]

a'.l
=
"

2 (49)
p,(g.gr)c (x)

-
-

Using the result of the appendix, we have

1

s 1 3 c’(;)

b(x.8)] = |p

3 2 - .
]A (x.x) * 167 Jgr B p (50)

snd so, using the general result (21) we obtain

1
i
daa
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2, = AEx) ¢’ (x)
alx) = _“ d'e {gt A1) 1+ = ps’(p,-pss) ﬁl_ ‘R,
-iw[t(g,;s) +t(zx)) (s1)
. I de F(w) e D(w,x.) *

In (51) we have restated the result in (50) by use of the eikonal
equation for A

The implementation of (51) is not as simple as the zero-offset cases
the principle difficulty being the necessity to compute the two amplitude
factors. In addition, the questions of constructing “synthetic apertures”
in order to use am srray of common source gathers as well as how to
systematically use nearby common source gathers to reduce noise in a post
migration processing remain open,

Obvionsly, the solotion for the common receiver configurastion cam be

-——— —  ———

derived at once from (51) by interchanging the subscripts s and r and

defining
B = Vel(zox) (52)
p,= Ve(z.x) (53)
-17 -
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Al: Appendix on the Zero-Offset Jacobisn

It is oetural to think of t(x,x,) 8s the travel time along a ray path
with initial point z, and running point I. In this model, p is the
associated ray direction along the ray from x, to x. Furthemmore, to solve

the eikonal equation in this model by the method of characteristics (or "ray

method”), one must consider the family of rays emanating from the "fixed”

point X and consider x as an arbitrary field point. O0f conrse, in

o
constructing the eikonal, T, and transport amplitude, A, we can consider X,
to be an arbitrary point on the observation surface, or otherwise put, we
repeat the ray method solotion for each x,.

On the other hand, if we think of the field point, X, as fixed, it is

equally valid to compute the travel time osing e& ray with initial point X

and "final” point, x In this model, this "upward” ray direction is

o°

simply the negative of the ray direction on the "downward” ray at any given

point on the ray, and we consider the family of rays emanating from the
"fixed” point x.

In the computation of the 2 by 2 Jacobian determimant in (31), we need
to compute derivatives with respect to the second argument of p. Thus we
adopt the point of view where x is fixed. However, in our original
description, the vector x, was bound to the observation surface. Thuos we

introduce a new running variable, y, governed by the ray equations,

g . p »» 3y(0)=1x

do
gs = % v l; ’ p(0) free (A-1)
c

:_231—’ ’ ©(0) =0
c

I T i gt e .
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R I I R T S TR R i SR PPN . . . . e ..
P Y O, v . P R P S, R P P T A P A R A P




Bt gl S Jaaie Bese o

halh® o A i SaEie *u S ol A o/ S i i i S

¥e impose no condition on the starting ray direction in (A-1) becaunse, to
constraoct the Green’s function, we want the ”"conoidal” solution of the
eikonal equation (Bleistein, 1984b). In order to impose the condition that

each ray emanating from x passes through a point, x on the observation

ol

surface, we demand

vl = x (2) (A-2)

This last condition defines, for each such ray the final value, o of o as

s function of {. (The question of having a unique ray to esch surface point

is subsumed in the issue of the non-vapnishing of Beylkin's h determinant.)
We now evaluate our 2 by 2 Jacobian by introducing the ray parameter o

and then using the chain runle as follows:

3(91(5"0)'91(5'50)) a(pl(g.z).p,(g.z))

a({isez—j a({l,tz) g = Uf (A-3)
a(pl. p’.U)
EEICE T L
a(Pxi Pza o) a(yl.y’,y')
- a(yl.yz.y,) (4] =°f ) 3(51.§’. o) c = of

The second of these 3 by 3 Jacobians can be evalusted as

My .y,.¥,) t,
3(§l.§,.0) g = Uf - -t»’ (A-4)
= —20 d L, p 4 :,

IR N

where we have introduced the surface tangent vectors
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d
L £ . i=1,2, (A-5)

and where P, denotes the initial direction of the ray from x, to x (or the

o]

negative of the final direction of the ray from x to x,) and finally £

denotes the unit downward normal to the data suvrface at X,. The remsining

Jacobian in (A-3) is the reciprocal of the ray Jacobian for reys emanating

RN

from x ; 1
E R

a(yl.yz:y’) T

J(y) = W ‘ (A-6) o

From the transport equation, we can derive the relation,

Jy) Az(y.g) = constant (A-7) .

(see (Bleistein, 1984b)). The constant in (A~7) can be evaluated by

allowing y to approach the fixed field point x and using the constant ¢

result with c being c(x). We find for this limit, -

ip JAT s ————— , (A-8)
‘?! 16nzp’(§. x)

so that the ray Jacobian is given by

|l - ! (A-9)

16n’p' (x, z,) A’(g. x,)

Here we have used reciprocity to switch the srguments of A. Combining (A-

3), (A-4), and (A-9) we find that the required 2 by 2 Jacobian is given by

a(p.,p.) -
3 2 3 3 - -
573:73:; 167°p, (x,2)A (;.!o)‘g t B, (A-10) f

as asserted in the text (32).
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attempt to rigorously prove our results, but instead content ourselves with
an intoitive derivation and the citing of Beylkin's main theorem,. ""'1-

We have established significant simplifications of Beylkin’'s result for
the following cases of propagation govermed by the acoustic wave equation:
the zero-offset case and the common source offset gather and the common
teceiver offset gather with general c(x,y,z) reference velocity; and the
cese of common offset with a constant reference velocity.

SECURITY CLASSIFICATION OF TH!S PAGE(When Date Entered)

. _.-‘_-. o - ST - -

R I P I I S AP ST MU T Y I ol U0 S0 Tl G G il .0 Wy

e e e . - PP




S R A P ESRA Y it R tall Uil A M M Sl S i i S L S A A MACE A el i e L S el G et i

END

FILMED

10-85

TR AR el &)

.

‘v




